
How to Configure FSGateway and RSLinx Data Source

LEGACY TECH NOTE # 392

Doc ID: TN64 Version: 6 Status: published Last Modified: 05/01/2015 Cat: FS Gateway

SUMMARY

FSGateway can be configured to access data sources using DDE, SuiteLink, and OPC protocols.

This technote explains the step-by-step procedure to configure the FSGateway and the Rockwell Software's

RSLinx data source to access data in an Allen-Bradley PLC (a ControlLogix PLC is being used in this

example).

Before you continue, make sure you have the following:

• Install and configure RSLinx (OEM version minimum, Professional or higher recommended) so that it

communicates with the PLC. RSLinx needs to have at lease one topic defined.

• Check the Readme file for the system requirements and the installation information before installing the

FSGateway.

• Install the latest version of the FSGateway. If a previous version was installed, be sure to uninstall it

using Control Panel - Add/Remove Programs. To check the version number of the server, use Control

Panel - Add/Remove Programs - select Wonderware ABCIP DAServer, then click Support

Information.

SITUATION

Assumptions

• FSGateway version 1.0.001 is used in this technote.

• RSLinx Gateway version 2.42.00 (Build 18) is used.

• Both FSGateway and RSLinx are installed on the same computer with Windows®2000 Professional

Service Pack 4.

• This technote assumes the user has a basic working knowledge and understanding of Allen-Bradley

software/hardware, Microsoft® Operating System, and Wonderware® products. If you have problem

configuring the ControlLogix or RSLinx, please contact Allen-Bradley for assistance at www.ab.com

• The configuration of the ControlLogix PLC project is outside the scope of this tech note. However,

typical Control Scope tags have been added in the PLC: MyInt, MyFloat, and MyBool. These tags are

of types integer, floating point (or real), and Boolean respectively.

Configure RSLinx Data Source

1. Launch RSLinx.

2. Verify that the communication driver has been added, correctly configured, and is running.

In this example, the Ethernet Device is used to communicate with a ControlLogix (Model 1756-L63)

over the Ethernet network.

To configure this, under Communication /Configure Driver, highlight the Ethernet Device driver (named

https://softwaresupportsp.schneider-electric.com/Pages/OKMArticleResult.aspx?docId=TN64
http://www.ab.com/

AB_ETH-1) and click Configure.

The PLC in this example has an IP address of 192.168.10.25. You should see the IP address for the

intended PLC in the Station Mapping grid similar to Figure 1 (below):

Figure 1: PLC Station Mapping

3. Click OK to close the Configure driver dialog box.

The Configure Drivers dialog box should show of the driver is running:

Figure 2: RSLinx Ethernet Device Communication Driver

4. Verify that RSLinx recognizes the PLC on the Ethernet network by using Communications/RSWho.

Figure 3 (below) indicates that RSLinx can browse the PLC on the Ethernet network:

Figure 3: RSWho Found the PLC

5. Select DDE/OPC /Topic Configuration from the main menu .

6. Highlight the topic (Topic CLx5563) for the controller.

The respective PLC processor should also be highlighted on the right pane as shown in Figure 4 (below):

Figure 4: RSLinx DDE/OPC Topic Configuration

7. Click Done to close the Topic Configuration window.

Configure FSGateway

1. Select Start/Programs/Wonderware/System Management Console to launch the System

Management Console (SMC).

2. From the System Management Console, navigate in the DAServer Manager to the FSGateway hierarchy

(expand DAServer Manager/Default Group/ Local/ArchestrA.FSGateway.1).

See figure 5 (below):

Figure 5: FSGateway in the SMC

3. Expand the ArchestrA.FSGateway.1 icon.

4. Click on Configuration object. The Global Parameters dialog box will appear on the right pane of the

window. See Figure 6 (below):

Figure 6: FSGateway Global Parameters

Note If the system has more than 5,000 items on advise, it is recommended that the Transaction Message

Timeout should be set to 120 seconds.

5. Right click the Configuration object and select Add OPC Object.

A new default New_OPC_000 object is added to the hierarchy tree.

6. Right click New_OPC_000 and select Rename to change it to a meaningful name such as

RSLinxOPC.

7. Accept the default Server Node name of localhost (On the OPC Parameters window RSLinxOPC

Parameters area , which indicates that RSLinx is running on the same computer with FSGateway.

Note: If RSLinx and FSGateway are on different computers, RSLinx Gateway version is required for

remote connection. If RSLinx and FSGateway are on different computers, the server node name

should be the name of the computer running RSLinx.

8. Click on the browse button to browse the OPC server, then select the RSLinx OPC Server.

Figure 7: Selecting the RSLinx OPC Server

Figure 8: OPC Object Parameters

9. Right-click RSlinxOPC to add a new OPC group object New_OPC_Group_000.

After every change, if you haven't saved the configuration, you will be prompted to save it.

10. Click Yes to save the changes:

Figure 9: Save Prompt

11. Rename the default New_OPC_Group_000 to a meaningful name such as CLX5563 (Figure 10 below):

Figure 10: OPC Group Parameters

12. Click the Browse OPC Items button .

The OPC Item Browser appears.

13. Select and expand the topic (CLX5563) defined in RSLinx as shown in the above step:

Figure 11: OPC Item Browser - Select the OPC group (RSLinx topic)

14. Expand the Online folder and select items in the PLC.

Since the PLC tags MyBool, MyFloat, and MyInt are defined as arrays of 10 elements each, we will

add only the first element for each tag.

Figure 12: Add PLC tags

15. Click OK to return to the OPC Group Parameters tab field as shown in Figure 10 above.

16. Select the Device Item tab to display all the items we just added:

Figure 13: Device Items

The Device Items table includes two columns: Name and Item Reference. This is where aliases are assigned

for each item reference.

Figure 14: Device Item Aliases

The FSGateway is now ready for use. In order to use it, you must activate it.

17. Right-click ArchestrA.FSGateway.1 and click on Activate Server on the shortcut menu.

Figure 15: Activate the FSGateway

Test Communications

You can now test the connections to the PLC. We will use the WWClient utility for the test (click here to

download).

To launch the WWClient:

1. Click Start/Run from the Windows taskbar.

2. Enter WWClient to launch the Wonderware WWClient program.

3. Select Connections/Create from the main menu bar.

The Create Connection dialog box appears.

4. Enter appropriate information as shown in the following figure:

Figure 16: WWClient - Create Connection Dialog Box

5. Select Item on the main menu.

6. Enter a known good PLC tag in the Item entry box, and click AdviseEX.

In this example, alias items MyBool_0, MyFloat_0, and MyInt_0 are entered:

https://softwaresupportsp.schneider-electric.com/Pages/t002022.htm

Figure 17: Advising tags

The following figure (Figure 18 below) shows an example of WWClient successfully advising items

MyBool_0, MyFloat_0, and MyInt_0:

Figure 18: Successful Advise

DDE Examples

This section provides several examples of using DDE with SAS under Windows. These examples use Microsoft

Excel and Microsoft Word as DDE servers, but any application that supports DDE as a server can communicate

with SAS.

Before you run these examples, you must first invoke Microsoft Excel and Microsoft Word, and open the

spreadsheet or document used in the example.

Note: DDE examples are included in the host-specific sample programs that you access from the Help

menu.

• Using the X Command to Open a DDE Server

Using DDE to Write Data to Microsoft Excel

Using DDE to Write Data to Microsoft Word

Using DDE to Read Data from Microsoft Excel

Using DDE to Read Data from Microsoft Word

Using DDE and the SYSTEM Topic to Invoke Commands in an Application Using Excel

Using the NOTAB Option with DDE

Using the DDE HOTLINK

Using the !DDE_FLUSH String to Transfer Data Dynamically

Reading Missing Data

Using the X Command to Open a DDE Server

A DDE server application can be opened using the X command within SAS code. The XWAIT and XSYNC

options must be turned off.

options noxwait noxsync;

x '"c:\microsoft office\office\excel.exe"';

Double quotation marks are required around the path if the path contains a space. The single quotation marks

are for the X command.

Using DDE to Write Data to Microsoft Excel

The first example sends data from a SAS session to an Excel spreadsheet. The target cells are rows 1 through

100 and columns 1 through 3. To send the data, submit the following program:

/* The DDE link is established using */

/* Microsoft Excel SHEET1, rows 1 */

/* through 100 and columns 1 through 3 */

filename random dde

 'excel|sheet1!r1c1:r100c3';

data random;

 file random;

 do i=1 to 100;

 x=ranuni(i);

 y=10+x;

 z=x-10;

 put x y z;

 end;

run;

http://support.sas.com/documentation/cdl/en/hostwin/63285/HTML/default/ddeexamples.htm#ddexcmd
http://support.sas.com/documentation/cdl/en/hostwin/63285/HTML/default/ddeexamples.htm#exddewrite
http://support.sas.com/documentation/cdl/en/hostwin/63285/HTML/default/ddeexamples.htm#exddewriteword
http://support.sas.com/documentation/cdl/en/hostwin/63285/HTML/default/ddeexamples.htm#exdderead
http://support.sas.com/documentation/cdl/en/hostwin/63285/HTML/default/ddeexamples.htm#exddereadword
http://support.sas.com/documentation/cdl/en/hostwin/63285/HTML/default/ddeexamples.htm#systemtopic
http://support.sas.com/documentation/cdl/en/hostwin/63285/HTML/default/ddeexamples.htm#notab
http://support.sas.com/documentation/cdl/en/hostwin/63285/HTML/default/ddeexamples.htm#hotlink
http://support.sas.com/documentation/cdl/en/hostwin/63285/HTML/default/ddeexamples.htm#exddeflush
http://support.sas.com/documentation/cdl/en/hostwin/63285/HTML/default/ddeexamples.htm#missdata

Using DDE to Write Data to Microsoft Word

This example sends a text string to a Microsoft Word document at a given bookmark. Note the difference

between using DDE with Microsoft Word and Microsoft Excel.

filename testit dde 'winword|"c:\temp\testing.doc"

 !MARK' notab;

data _null_;

 file testit;

 put 'This is a test.';

run;

Note: If you are writing to Microsoft Word97, use Visual Basic commands such as FileOpen.Name, FileSave,

FileClose, and Insert. If the PUT statement contains a macro that Word97 does not understand, you will see this

message:

Ambiguous name detected: TmpDDE

Using DDE to Read Data from Microsoft Excel

You can also use DDE to read data from an Excel application into SAS, as in the following example:

/* The DDE link is established using */

/* Microsoft Excel SHEET1, rows 1 */

/* through 10 and columns 1 through 3 */

filename monthly

 dde 'excel|sheet1!r1c1:r10c3';

data monthly;

 infile monthly;

 input var1 var2 var3;

run;

proc print;

run;

Using DDE to Read Data from Microsoft Word

This example reads data from a Microsoft Word document at a given bookmark.

filename testit dde 'winword|"c:\temp\testing.doc"

 !MARK' notab;

libname workdir 'c:\temp';

/* Get ready to read the first bookmark. */

data workdir.worddata;

 length wordnum $5;

 infile testit;

 input wordnum $;

run;

proc print;

run;

Using DDE and the SYSTEM Topic to Invoke Commands in an Application Using Excel

You can issue commands to Excel or other DDE-compatible programs directly from SAS using DDE. In the

following example, the Excel application is invoked using the X command; a spreadsheet called SHEET1 is

loaded; data are sent from SAS to Excel for row 1, column 1 to row 20, column 3; and the commands required

to select a data range and sort the data are issued. The spreadsheet is then saved and the Excel application is

terminated.

/* This code assumes that Excel */

/* is installed on the current */

/* drive in a directory called EXCEL. */

options noxwait noxsync;

x '"c:\microsoft office\office\excel.exe"';

/* Sleep for 60 seconds to give */

/* Excel time to come up. */

data _null_;

 x=sleep(60);

run;

/* The DDE link is established using */

/* Microsoft Excel SHEET1, rows 1 */

/* through 20 and columns 1 through 3 */

filename data

 dde 'excel|sheet1!r1c1:r20c3';

data one;

 file data;

 do i=1 to 20;

 x=ranuni(i);

 y=x+10;

 z=x/2;

 put x y z;

 end;

run;

/* Microsoft defines the DDE topic */

/* SYSTEM to enable commands to be */

/* invoked within Excel. */

filename cmds dde 'excel|system';

/* These PUT statements are */

/* executing Excel macro commands */

data _null_;

 file cmds;

 put '[SELECT("R1C1:R20C3")]';

 put '[SORT(1,"R1C1",1)]';

 put '[SAVE()]';

 put '[QUIT()]';

run;

Using the NOTAB Option with DDE

SAS expects to see a TAB character placed between each variable that is communicated across the DDE link.

Similarly, SAS places a TAB character between variables when data are transmitted across the link. When the

NOTAB option is placed in a FILENAME statement that uses the DDE device-type keyword, SAS accepts

character delimiters other than tabs between variables.

The NOTAB option can also be used to store full character strings, including embedded blanks, in a single

spreadsheet cell. For example, if a link is established between SAS and the Excel application, and a SAS

variable contains a character string with embedded blanks, each word of the character string is normally stored

in a single cell. To store the entire string, including embedded blanks in a single cell, use the NOTAB option as

in the following example:

/* Without the NOTAB option, column1 */

/* contains 'test' and column2 */

/* contains 'one'. */

filename test

 dde 'excel|sheet1!r1c1:r1c2';

data string;

 file test;

 a='test one';

 b='test two';

 put a $15. b $15.;

run;

/* You can use the NOTAB option to store */

/* each variable in a separate cell. To */

/* do this, you must force a tab */

/* ('09'x) between each variable, as in */

/* the PUT statement. */

/* After performing this DATA step, column1*/

/* contains 'test one' and column2 */

/* contains 'test two'. */

filename test

 dde 'excel|sheet1!r2c1:r2c2' notab;

data string;

 file test;

 a='test one';

 b='test two';

 put a $15. '09'x b $15.;

run;

Using the DDE HOTLINK

If the HOTLINK option is specified, the DDE link is activated every time the data in the specified spreadsheet

range are updated. In addition, DDE enables you to poll the data when the HOTLINK option is specified to

determine whether data within the range specified have been changed. If no data have changed, the HOTLINK

option returns a record of 0 bytes. In the following example, row 1, column 1 of the spreadsheet SHEET1

contains the daily production total. Every time the value in this cell changes, SAS reads in the new value and

outputs the observation to a data set. In this example, a second cell in row 5, column 1 is defined as a status

field. Once the user completes data entry, typing any character in this field terminates the DDE link:

/* Enter data into Excel SHEET1 in */

/* row 1 column 1. When you */

/* are through entering data, place */

/* any character in row 5 */

/* column 1, and the DDE link is */

/* terminated. */

filename daily

 dde 'excel|sheet1!r1c1' hotlink;

filename status

 dde 'excel|sheet1!r5c1' hotlink;

data daily;

 infile status length=flag;

 input @;

 if flag ne 0 then stop;

 infile daily length=b;

 input @;

 /* If data have changed, then the */

 /* incoming record length */

 /* is not equal to 0. */

 if b ne 0 then

 do;

 input total $;

 put total=;

 output;

 end;

run;

It is possible to establish multiple DDE sessions. The previous example uses two separate DDE links. When the

HOTLINK option is used and there are multiple cells referenced in the item specification, if any one of the cells

changes, then all cells are transmitted.

Unless the HOTLINK option is specified, DDE is performed as a single one-time data transfer. The values

currently stored in the spreadsheet cells at the time that the DDE is processed are values that are transferred.

Using the !DDE_FLUSH String to Transfer Data Dynamically

DDE also enables you to program when the DDE buffer is dumped during a DDE link. Normally, the data in the

DDE buffer are transmitted when the DDE link is closed at the end of the DATA step. However, the special

string '!DDE_FLUSH' issued in a PUT statement instructs SAS to dump the contents of the DDE buffer. This

function allows you considerable flexibility in the way DDE is used, including the capacity to transfer data

dynamically through the DATA step. The following example creates a Macro Sheet in Microsoft Excel.

Commands are then written to the Macro Sheet, which will rename Sheet1 to NewSheet. After writing these

commands, through the use of !DDE_FLUSH , the Excel Macro can be executed in the same DATA Step as it

is written.

filename cmds dde 'excel|system';

data _null_;

file cmds;

/* Insert an Excel Macro Sheet */

put '[workbook.insert(3)]';

run;

/* Direct the Output to the Newly created Macro Sheet */

filename xlmacro dde 'excel|macro1!r1c1:r5c1' notab;

data _null_;

file xlmacro;

put '=workbook.name("sheet1","NewSheet")';

put '=halt(true)';

/* Dump the contents of the buffer, allowing us to both write and */

/* execute the macro in the same DATA Step */

put '!dde_flush';

file cmds;

/* Run Macro1 */

put '[run("macro1!r1c1")]';

put '[error(false)]';

/* delete the Macro Sheet */

put '[workbook.delete("macro1")]';

run;

Using Macro Variables to Issue DDE Commands

This example illustrates the use of a Macro Variable to issue a command to Microsoft Excel. In the example,

the Macro Variable, excelOne, is being used in place of the Excel Workbook location C:\test.xls. Since macro

triggers such as ampersands and percents are treated as text within single quotes, a Macro quoting function must

be used. %STR is used to mask each individual apostrophe separately. Anytime you have an unmatched

apostrophe or parenthesis then it must be preceded by a percent sign and since each apostrophe needs to be

treated independently of each other the percents are needed. Once %STR has hidden the apostrophe the macro

variable &excelOne resolves. %UNQUOTE is then used to remove what %STR has done and restores each

apostrophe around the resolved value leaving the result as:

'[open("C:\test.xls")]'

options mprint symbolgen;

filename cmds dde 'excel|system';

%let excelOne=C:\test.xls;

data _null_;

file cmds;

put %unquote(%str(%'[open("&excelOne")]%'));

run;

Reading Missing Data

This example illustrates reading missing data from an Excel spreadsheet called SHEET1. This example reads

the data in columns 1 through 3 and rows 10 through 20. Some of the data cells can be blank. Here is an

example of what some of the data look like:

...

10 John Raleigh Cardinals

11 Jose North Bend Orioles

12 Kurt Yelm Red Sox

13 Brent Dodgers

...

Here's the code that can read these data correctly into a SAS data set:

filename mydata

 dde 'excel|sheet1!r10c1:r20c3';

data in;

 infile mydata dlm='09'x notab

 dsd missover;

 informat name $10. town $char20.

 team $char20.;

 input name town team;

run;

proc print data=in;

run;

In this example, the NOTAB option tells SAS not to convert tabs that are sent from the Excel application into

blanks. Therefore, the tab character can be used as the delimiter between data values. The DLM= option

specifies the delimiter character, and '09'x is the hexadecimal representation of the tab character. The DSD

option specifies that two consecutive delimiters represent a missing value. The default delimiter is a comma.

For more information about the DSD option, see SAS Language Reference: Dictionary. The MISSOVER option

prevents a SAS program from going to a new input line if it does not find values in the current line for all the

INPUT statement variables. With the MISSOVER option, when an INPUT statement reaches the end of the

current record, values that are expected but not found are set to missing.

The INFORMAT statement forces the DATA step to use modified list input, which is crucial to this example. If

you do not use modified list input, you receive incorrect results. The necessity of using modified list input is not

DDE specific. You would need it even if you were using data in a CARDS statement, whether your data were

blank- or comma-delimited

